Would anyone with relevant experience care to comment on these toxicity studies for DMSO? Seems to make the stuff a non-starter, particularly given the CNS damage at 0.3 mL/kg dose (in mice, so HED might even be lower... a few mL for an adult human).
Dimethyl sulfoxide (DMSO) produces widespread apoptosis in the developing central nervous system.
Unexpected low-dose toxicity of the universal solvent DMSO.Dimethyl sulfoxide (DMSO) is a solvent that is routinely used as a cryopreservative in allogous bone marrow and organ transplantation. We exposed C57Bl/6 mice of varying postnatal ages (P0-P30) to DMSO in order to study whether DMSO could produce apoptotic degeneration in the developing CNS. DMSO produced widespread apoptosis in the developing mouse brain at all ages tested. Damage was greatest at P7. Significant elevations above the background rate of apoptosis occurred at the lowest dose tested, 0.3 ml/kg. In an in vitro rat hippocampal culture preparation, DMSO produced neuronal loss at concentrations of 0.5% and 1.0%. The ability of DMSO to damage neurons in dissociated cultures indicates that the toxicity likely results from a direct cellular effect. Because children, who undergo bone marrow transplantation, are routinely exposed to DMSO at doses higher than 0.3 ml/kg, there is concern that DMSO might be producing similar damage in human children.
(emphasis mine)Dimethyl sulfoxide (DMSO) is an important aprotic solvent that can solubilize a wide variety of otherwise poorly soluble polar and nonpolar molecules. This, coupled with its apparent low toxicity at concentrations <10%, has led to its ubiquitous use and widespread application. Here, we demonstrate that DMSO induces retinal apoptosis in vivo at low concentrations (5 μl intravitreally dosed DMSO in rat from a stock concentration of 1, 2, 4, and 8% v/v). Toxicity was confirmed in vitro in a retinal neuronal cell line, at DMSO concentrations >1% (v/v), using annexin V, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), and AlamarBlue cell viability assays. DMSO concentrations >10% (v/v) have recently been reported to cause cellular toxicity through plasma membrane pore formation. Here, we show the mechanism by which low concentrations (2-4% DMSO) induce caspase-3 independent neuronal death that involves apoptosis-inducing factor (AIF) translocation from mitochondria to the nucleus and poly-(ADP-ribose)-polymerase (PARP) activation. These results highlight safety concerns of using low concentrations of DMSO as a solvent for in vivo administration and in biological assays. We recommend that methods other than DMSO are employed for solubilizing drugs but, where no alternative exists, researchers compute absolute DMSO final concentrations and include an untreated control group in addition to DMSO vehicle control to check for solvent toxicity.