• Log in with Facebook Log in with Twitter Log In with Google      Sign In    
  • Create Account
  LongeCity
              Advocacy & Research for Unlimited Lifespans

Photo

Human Lung Epithelial Cells Divide >200 Population Doublings without Engaging a Telomere Maintenance Mechanism

hayflick limit tert lung cells moorehead telomeres fibroblasts senescence rna dna rock

  • Please log in to reply
No replies to this topic

#1 Engadin

  • Guest
  • 198 posts
  • 580
  • Location:Madrid
  • NO

Posted 23 March 2019 - 06:47 PM


Abstract:

 

The “Hayflick limit” is a “mitotic clock” and primary cells have a finite lifespan that correlates with telomere length. However, introduction of the telomerase catalytic protein component (TERT) is insufficient to immortalize most, but not all, human cell types under typical cell culture conditions. Originally, telomerase activity was only detected in cancer cells but is now recognized as being detectable in transit amplifying cells in tissues undergoing regeneration or in extreme conditions of wound repair. Here we report that in vitro low stress culture conditions allow normal human lung basal epithelial cells to grow for over 200 population doublings without engaging any telomere maintenance mechanism. This suggests that most reported instances of telomere-based replicative senescence are due to cell culture stress-induced premature senescence.

 

 

One Sentence Summary:

 

 

Human lung cells growing in reduced stress conditions can divide well beyond the Hayflick limit.

 

 

Main Text:

 

 

Introduction

 

 

Hayflick  and  Moorhead  demonstrated  that  fetal  lung  fibroblasts  grown  in  standard  cell  culture conditions  in  21%  atmospheric  oxygen  levels  containing  fetal  bovine  serum  had  a  limited replicative  lifespan in  vitro of  about  50-60  population  doublings  (PD),  which  became  known  as the  Hayflick  limit  (1,  2).  Since  then  others  have  demonstrated  that  oxygen  sensitivity  is  one of the extrinsic factors limiting the replicative lifespan of both human (3) and murine fibroblasts (4).

 

Shortened  telomeres  correlated  with  and  appeared  to  be  a  hallmark  of  human  fibroblasts cultured in vitro for extended passages, but whether shortened telomeres had a causative role in replicative senescence was unknown (5). While a few cell types can be immortalized by just the ectopic introduction of TERT (catalytically active and rate limiting component of telomerase) (6),  most  human  cell  lines  (under  typical  culture  conditions)  cannot  be  immortalized  by exogenous TERT expression alone (7, 8). Thus, it remains to be determined if the Hayflick limit as originally described for fetal human lung fibroblasts is due to critically shortened telomeres or cell culture shock-induced premature senescence (9).

 

Telomerase  is  a  conserved  ribonucleoprotein  enzyme  complex  (10)  that  uses  an  RNA template to reverse transcribe and add TTAGGG n DNA sequences at mammalian chromosome ends  during  DNA  replication  (11,  12).  Initially,  telomerase  activity  was  only  associated  with advanced  human  tumors  and  cancer  cell  lines  while  most  somatic  tissues  tested  were telomerase negative (13). Further investigations detected telomerase activity in a subset of fast proliferating  normal  human  cells,  including  hematopoietic  tissues  (14-17),  skin  (18,  19),  hair follicles  (20),  and  intestinal  mucosa  (21).  Epithelial  cell  turnover  in  the  lung  occurs  at  a  slower pace  in  the  absence  of  damage.  For  example,  ciliated  tracheal  cells  have  a  half-life  of  six months  and  ciliated  bronchial  cells  have  a  half-life  of  seventeen  months  in  mouse  lung  (22).

 

While telomerase activity has not been previously reported in adult human lung tissue, it may be transiently  expressed  in  basal  progenitor  cells  during  injury  repair.  The  important  role  of telomerase  in  regeneration  of  adult  tissue  is  underscored  by  the  manifestation  of  genetic diseases  in  individuals  with  telomere  spectrum  disorders,  ranging  from  bone  marrow  failure  to idiopathic  pulmonary  fibrosis  (23,  24).  Lung  basal  progenitor  cells  have  been  shown  to  have long-term  replicative  capacity in  vivo for  lung  repair  and  regeneration  (25,  26),  but  senesceence in standard in vitro culture conditions after several passages.

 

Recently, we demonstrated that less stressful  conditions  for  long-term  expansion  of  primary  human  bronchial  epithelial  basal  cells (HBECs) in  vitro include  co-culturing  with  an irradiated  fibroblast  feeder  layer,  ROCK  inhibitor, and 2% oxygen (ROCKi conditions) (27). While differentiated lung epithelial cells are exposed to 21% atmospheric oxygen in vivo, basal lung stem cells residing near the basement membrane are exposed to much lower oxygen levels. Therefore, low oxygen culture conditions reduce the oxidative  stress  and  DNA  damage  that  occur  in  standard  cell  culture  conditions  that  is  not representative  of in  vivo conditions  (28).  For  these  reasons,  the  improved  ROCKi  conditions were  modified  from  conditional  reprogramming  of  cells  (CRC)  as  originally  described  (29)  to include 2% oxygen in addition to a change from standard epithelial cell proliferation F-media to a  more  defined  Bronchial  Epithelial  Growth  Media  (BEGM)  (27).

 

In  CRC  conditions  and  21% oxygen, primary HBECs only grow for about 50 population doublings (29). Replacement of the fibroblast  feeder  layer  with  pharmacological  inhibition  of  PAK1-ROCK-Myosin  II  and TGF-β signaling  also  extends  primary  HBEC  proliferation in  vitro to  50  population  doublings,  but accumulation of large cells preceded senescence and correlated with shortened telomeres (30).

 

We hypothesized  that  HBECs  in  ROCKi  conditions  would  exhibit  an  extended  lifespan compared to HBECs in standard culture conditions, but would senesce when telomeres reached a critically short telomere length or engage a telomere maintenance mechanism. Here we report the in vitro culture of primary HBECs well beyond the Hayflick limit without engaging a telomere length maintenance mechanism for over 200 population doublings (Figure 1A, blue line).

 

 

Rest at the source: https://www.biorxiv....0.1101/474270v2 (click on 'Preview .pdf).


  • Informative x 1
  • like x 1





Also tagged with one or more of these keywords: hayflick limit, tert, lung cells, moorehead, telomeres, fibroblasts, senescence, rna, dna, rock

1 user(s) are reading this topic

0 members, 1 guests, 0 anonymous users