https://journals.phy...enal.00461.2021
AbstractCaloric restriction (CR) prevents obesity and increases resilience against pathological stimuli in laboratory rodents. At the mitochondrial level, protection promoted by CR in the brain and liver is related to higher calcium uptake rates and capacities, avoiding Ca2+-induced mitochondrial permeability transition. Dietary restriction has also been shown to increase kidney resistance against damaging stimuli, but if these effects are related to similar mitochondrial adaptations has not been uncovered. Here, we characterized changes in mitochondrial function in response to six months CR in rats, measuring bioenergetic parameters, redox balance and calcium homeostasis. CR promoted an increase in succinate-supported mitochondrial oxygen consumption rates. While CR prevents mitochondrial reactive oxygen species production in many tissues, in kidney we found that mitochondrial H2O2 release was enhanced in a succinate-dependent manner. Surprisingly, and opposite to the effects observed in brain and liver, mitochondria from CR animals are more prone to Ca2+-induced mitochondrial permeability transition, in a manner reversed by antioxidant dithiothreitol. CR mitochondria also displayed higher calcium uptake rates, which were not accompanied by changes in calcium efflux rates, nor related to altered inner mitochondrial membrane potentials or amounts of the mitochondrial calcium uniporter (MCU). Instead, increased mitochondrial calcium uptake rates in CR kidneys correlate with a loss of MICU2, an MCU modulator. Interestingly, MICU2 is also modulated by CR in liver, suggesting it has a broader diet-sensitive regulatory role controlling mitochondrial calcium homeostasis. Together, our results highlight the organ-specific bioenergetic, redox, and ionic transport effects of CR, with some unexpected deleterious effects in kidney.