anyone have a view on the life extending mechanisms behind Rhodiola Rosea? is it predicated on better functioning mitochondria...
http://www.ncbi.nlm....pubmed/17990971Rhodiola: a promising anti-aging Chinese herb.
Jafari M, Felgner JS, Bussel II, Hutchili T, Khodayari B, Rose MR, Vince-Cruz C, Mueller LD.
Department of Pharmaceutical Sciences, University of California-Irvine, Irvine, CA 92697, USA. mjafari@uci.edu
Using the fruit fly, Drosophila melanogaster, we investigated the effects of Rhodiola on life-span. Rhodiola is a plant root used in traditional Chinese medicine that may increase an organism's resistance to stress. It has been proposed that Rhodiola can extend longevity and improve health span by alleviating oxidative stress.
Rhodiola supplied every other day at 30 mg/mL significantly increased the lifespan of Drosophila melanogaster. When comparing the distribution of deaths between Rhodiola-supplemented and control flies, Rhodiola-fed flies exhibited decelerated aging. Although the observed extension in lifespan was associated with statistically insignificant reductions in fecundity, correcting for a possible dietary restriction effect still did not eliminate the difference between supplemented and control flies, nor does the effect of Rhodiola depend on dietary manipulation, strongly suggesting that Rhodiola is not a mere dietary restriction mimetic. Although this study does not reveal the causal mechanism behind the effect of Rhodiola, it does suggest that the supplement is worthy of continued investigation, unlike the other Chinese herbals, Lu Duo Wei (LDW), Bu Zhong Yi Qi Tang (BZYQT), San Zhi Pian (SZP, Three Imperial Mushrooms), Hong Jing Tian (Rhodiola) that were evaluated in this study.
http://www.ncbi.nlm....pubmed/18536978Plant adaptogens increase lifespan and stress resistance in C. elegans.
Wiegant FA, Surinova S, Ytsma E, Langelaar-Makkinje M, Wikman G, Post JA.
Department of Biology, Cellular Architecture & Dynamics, Institute of Biomembranes, Utrecht University, The Netherlands. f.a.c.wiegant@uu.nl
Extracts of plant adaptogens such as Eleutherococcus senticosus (or Acanthopanax senticosus) and Rhodiola rosea can increase stress resistance in several model systems. We now show that both extracts also increase the mean lifespan of the nematode C. elegans in a dose-dependent way.
In at least four independent experiments, 250 microg/ml Eleutherococcus (SHE-3) and 10-25 microg/ml Rhodiola (SHR-5) significantly increased life span between 10 and 20% (P < 0.001), increased the maximum lifespan with 2-3 days and postponed the moment when the first individuals in a population die, suggesting a modulation of the ageing process. With higher concentrations, less effect was observed, whereas at the highest concentrations tested (2500 microg/ml Eleutherococcus and 250 microg/ml Rhodiola) a lifespan shortening effect was observed of 15-25% (P < 0.001). Both adaptogen extracts were also able to increase stress resistance in C. elegans: against a relatively short heat shock (35 degrees C during 3 h) as well as chronic heat treatment at 26 degrees C. An increase against chronic oxidative stress conditions was observed in mev-1 mutants, and during exposure of the wild type nematode to paraquat (10 mM) or UV stress, be it less efficiently. Concerning the mode of action: both adaptogens induce translocation of the DAF-16 transcription factor from the cytoplasm into the nucleus, suggesting a reprogramming of transcriptional activities favoring the synthesis of proteins involved in stress resistance (such as the chaperone HSP-16) and longevity. Based on these observations, it is suggested that adaptogens are experienced as mild stressors at the lifespan-enhancing concentrations and thereby induce increased stress resistance and a longer lifespan.
The
Genescient guys seem to be in the pro-Rhodiola Rosea camp. It piques my interest.
Edited by prophets, 25 January 2010 - 09:07 PM.