mods:
imo, this thread should be moved to the section designated solely for C60 threads, so as to keep the discussion more easily available to everyone interested in C60.
back on topic:
Reversing DNA methylation: new insights from neuronal activity-induced Gadd45b in adult neurogenesis.
http://www.ncbi.nlm....pubmed/19336837
Abstract
Neurogenesis in the adult mammalian brain involves activity-dependent expression of genes critical for the proliferation of progenitors and for neuronal maturation. A recent study suggests that the stress response gene Gadd45b (growth arrest and DNA-damage-inducible protein 45 beta) can be transiently induced by neuronal activity and may promote adult neurogenesis through dynamic DNA demethylation of specific gene promoters in adult hippocampus. These results provide evidence supporting the provocative ideas that active DNA demethylation may occur in postmitotic neurons and that DNA methylation-mediated dynamic epigenetic regulation is involved in regulating long-lasting changes in neural plasticity in mammalian brains.
The epigenetic bottleneck of neurodegenerative and psychiatric diseases.
http://www.ncbi.nlm....atric diseases.
Abstract
The orchestrated expression of genes is essential for the development and survival of every organism. In addition to the role of transcription factors, the availability of genes for transcription is controlled by a series of proteins that regulate epigenetic chromatin remodeling. The two most studied epigenetic phenomena are DNA methylation and histone-tail modifications. Although a large body of literature implicates the deregulation of histone acetylation and DNA methylation with the pathogenesis of cancer, recently epigenetic mechanisms have also gained much attention in the neuroscientific community. In fact, a new field of research is rapidly emerging and there is now accumulating evidence that the molecular machinery that regulates histone acetylation and DNA methylation is intimately involved in synaptic plasticity and is essential for learning and memory. Importantly, dysfunction of epigenetic gene expression in the brain might be involved in neurodegenerative and psychiatric diseases. In particular, it was found that inhibition of histone deacetylases attenuates synaptic and neuronal loss in animal models for various neurodegenerative diseases and improves cognitive function. In this article, we will summarize recent data in the novel field of neuroepigenetics and discuss the question why epigenetic strategies are suitable therapeutic approaches for the treatment of brain diseases.
Methionine-deficient diet extends mouse lifespan, slows immune and lens aging, alters glucose, T4, IGF-I and insulin levels, and increases hepatocyte MIF levels and stress resistance.
http://www.ncbi.nlm....pubmed/15924568
Abstract
A diet deficient in the amino acid methionine has previously been shown to extend lifespan in several stocks of inbred rats. We report here that a methionine-deficient (Meth-R) diet also increases maximal lifespan in (BALB/cJ x C57BL/6 J)F1 mice. Compared with controls, Meth-R mice have significantly lower levels of serum IGF-I, insulin, glucose and thyroid hormone. Meth-R mice also have higher levels of liver mRNA for MIF (macrophage migration inhibition factor), known to be higher in several other mouse models of extended longevity. Meth-R mice are significantly slower to develop lens turbidity and to show age-related changes in T-cell subsets. They are also dramatically more resistant to oxidative liver cell injury induced by injection of toxic doses of acetaminophen. The spectrum of terminal illnesses in the Meth-R group is similar to that seen in control mice. Studies of the cellular and molecular biology of methionine-deprived mice may, in parallel to studies of calorie-restricted mice, provide insights into the way in which nutritional factors modulate longevity and late-life illnesses.
How to re-energise old mitochondria without shooting yourself in the foot.
http://www.ncbi.nlm....pubmed/12014827
Abstract
In old humans and pathologies associated with mitochondrial mutations, deletions in mitochondrial DNA have been associated with failing function. Investigations have been reported where treatment with a number of micronutrients, such as coenzyme Q10, have been used to re-energise failing tissues. Bioenergy changes in ageing Drosophila have been observed which indicate similar changes in mitochondrial function in old age. Reserves of carbohydrate and fat fall and food intake rises. Biochemical changes include falling mitochondrial enzymes. Mitochondrial DNA contains increased amounts of sequences corresponding to deletions. Both coenzyme Q10 and nicotinamide in large doses successfully reversed bioenergy changes in aged Drosophila. However, only nicotinamide was able to reduce short term mortality and increase life span, whereas coenzyme Q10 increased mortality and reduced life span. Production of reactive oxygen species (ROS) was increased in coenzyme Q10 treated flies, whereas nicotinamide reduced ROS production. It is suggested that ROS production may account for these longevity differences. Large doses of two micronutrients have been successful in reversing the age-associated bioenergy deficit in Drosophila. This response is similar to clinical reports of re-energising tissues where mitochondrial damage has been observed. However, this work highlights a danger for some micronutrients, such as coenzyme Q10, that clinical efficacy may be limited by increased ROS production.
I found the last study after realizing that ubiquinone was a methyl donor. I choose to interpret the last study through that lens, not just from the perspective of ROS. I won't be taking it. I know that the methyl donor / methylation issue is contested as far as life extension goes, and to each their own.
Backstory: I have ocular migraines witch seem to be leading to glaucoma, and have systemic inflammation that has led to insulin resistance along with memory loss as a result. That's why I'm here. I was searching for studies on another methyl donor, riboflavin, for which there is evidence of migraine incidence attenuation. This is the first study that came up, when searching for it's effect on lifespan. I believe that it's quite appropriate to include, given the excitement over mehtylene blue here, and it's supposed role in mitochondrial support that in which it is roughly categorized along with C60. Both riboflavin and methylene blue are methyl donors, and I do acknowledge that the results of
this study are inconsistent as far as that is concerned:
Influence of photosensitizers and light on the life span of Drosophila.
http://www.ncbi.nlm..../pubmed/8350657
Abstract
The life span of adult Drosophila melanogaster fruit flies changed when they were fed two different photosensitizers. Methylene blue decreased the median life span by 49% when present in the food at a concentration of 0.001 M. Another photosensitizer, riboflavin, produced no changes in life span under the same conditions of a 12:12 h light/dark cycle at a daytime light intensity of 1000 lux. Flies exposed to constant darkness lived 43.2% longer than those exposed to constant light at a light intensity of 2000 lux. Under these conditions, riboflavin increased the life span of the flies exposed to constant light by as much as 25%. We conclude that riboflavin confers some degree of protection against the effects of constant light exposure. The completely different results obtained with riboflavin and methylene blue suggest a possible mechanism for photoageing involving photodynamic action mediated through the production of singlet oxygen.
Edited by golgi1, 02 October 2012 - 08:30 PM.