From what I can gather, adult stem cells are considered limited, unless the cells are cancerous. So the article from Science Daily is referring to the generation of in vitro cultures or embryonic cells or something along those lines.
When stem cells divide, they can form two new stem cells, a stem cell and a differentiated cell, or two differentiated cells. Obviously, if they did only the first they would get out of control, and if they did only the last, they'd become extinct. So there has to be some balance between self-renewal and differentiation.
Self-renewal is the process by which stem cells divide to make more stem cells, perpetuating the stem cell pool throughout life. Self-renewal is division with maintenance of the undifferentiated state. This requires cell cycle control and often maintenance of multipotency or pluripotency, depending on the stem cell. Self-renewal programs involve networks that balance proto-oncogenes (promoting self-renewal), gate-keeping tumor suppressors (limiting self-renewal), and care-taking tumor suppressors (maintaining genomic integrity). These cell-intrinsic mechanisms are regulated by cell-extrinsic signals from the niche, the microenvironment that maintains stem cells and regulates their function in tissues. In response to changing tissue demands, stem cells undergo changes in cell cycle status and developmental potential over time, requiring different self-renewal programs at different stages of life. Reduced stem cell function and tissue regenerative capacity during aging are caused by changes in self-renewal programs that augment tumor suppression. Cancer arises from mutations that inappropriately activate self-renewal programs.
http://www.annualrev...o.042308.113248
There is a relatively new idea that stem cell differentiation is driven by the mitochondria, and thus C60 may be indirectly acting by upregulating the metabolism of that organelle--
Stem cells are characterized by their multi-lineage differentiation potential (pluripotency) and their ability for self-renewal, which permits them to proliferate while avoiding lineage commitment and senescence. Recent studies demonstrate that undifferentiated, pluripotent stem cells display lower levels of mitochondrial mass and oxidative phosphorylation, and instead preferentially use non-oxidative glycolysis as a major source of energy. Hypoxia is a potent suppressor of mitochondrial oxidation and appears to promote "stemness" in adult and embryonic stem cells. This has lead to an emerging paradigm, that mitochondrial oxidative metabolism is not just an indicator of the undifferentiated state of stem cells, but may also regulate the pluripotency and self-renewal of stem cells. The identification of specific mitochondrial pathways that regulate stem cell fate may therefore enable metabolic programming and reprogramming of stem cells.
http://www.ncbi.nlm....pubmed/20809088
So you might expect C60 to use up stem cells by promoting differentiation, but would have no reason to expect it to create new stem cells.
Edited by Turnbuckle, 26 December 2012 - 02:20 PM.