Quercetin and dasatinib acted on totally different tissues. Quercetin worked on endothelial lining and dasatinib on fat cells. So why would you need to take both?...
I wonder if the effects were separate or if there is some synergism?
From Examine.com:
Resveratrol's effects on fat metabolism (inhibiting adipogenesis) are synergistic with the phytonutrient Genistein, of which the effects of synergism were roughly double the sum of the parts.[246] At 50umol/L, Genistein increased apoptosis of preadipocytes and mature adipocytes by 46±9.2% and Resveratrol at 100umol/L by 46±7.9%, whereas the combination was measured at 242 ± 8.7%. Similar synergism was seen in decreasing lipid accumulation, and the decreases in adipogenesis may have been through downregulation of PPARy.
The combination is also able to increase Jun-N-terminal phosporylation when no compound in isolation was able to, and increased fat lipolysis by 25.5±4.6% when no compound in isolation did.
14.2. Quercetin
Quercetin was also synergistic with Resveratrol in protection of blood vessels[247] and inhibition of adipogenesis and slightly more potent than Genistein in the overall percent synergism.[248]
Combining all three bioflavonoids showed further synergism and low-dosing the three can provide cumulatively similar benefits at cheaper costs.
http://examine.com/s...nts/Resveratrol
So it would seem that the above is a roundabout way of saying that Quercetin synergises with Resveratrol to cause apoptosis of preadipocytes and mature adipocytes.
Which means that by itself it has these effects to a lesser degree than with resveratrol.
This means that it might have a synergistic effect with Dasatinib..?
_____________________________________________________________________________
Examin.com's page on Quercetin is also well worth reading.
Of note:
An increase in the amount of intestinal permeability induced by training in the heat has been noted with quercetin supplementation, which is an adverse event; the influence
of quercetin at rest is uncertain.
So... hitting the gym after your Q+D dose to improve their distribution throughout the body may not be a great idea?
3. Pharmacology
After oral ingestion of quercetin, it is taken up from the gut into the liver. The conjugate of quercetin influences its absorption rates. At least intestinally, quercetin glycosides (food source) were found to have a 52+/-15% uptake, quercetin rutinoside (tea) has a 17+/-15% uptake, and supplemental quercetin aglycone had a 24+/-9% uptake.
One pharmacokinetic study in humans following consumption of 500mg Quercetin (as aglycone) noted that the delivery of Quercetin chews had a Cmax of 1051.9+/-393.1ug/mL at Tmax of 3.66 hours, with the Cmax and Tmax of Food bar format and juice suspension reaching 698.1+/-189.5μg/L (in 2.3h) and 354.4+/-87.6μg/L (4.7h), respectively.[16] This study had all forms using QU995, and was unable to conclude any significant differences between groups due to higher variability (just different average).
Appears to per se have a moderate to low bioavailability, depending on the source
Due to enhanced lymphatic release of Quercetin following administration of Long-Chain Fatty acids (LCFAs), it is thought that the formation of micelles from LCFAs can enhance the apparent bioavailability of Quercetin.
Quercetin is a potent inhibitor of intestinal sulfurotransferases, and has some activity on hepatic sulfurotransferases as well.[18] This mechanism may increase bioavailability of compounds that undergo extensive intestinal metabolism via this method, like Resveratrol.[19]
Interacts with intestinal conjugation enzymes, which may predispose Quercetin to nutrient-nutrient interactions
3.2. Circulating Quercetin
Acute administration of 2,000mg quercetin aglycone (in a food matrix) increases circulating quercetin aglycone to a concentration of 4.76+/-2.56μM at one hour.
250-500mg of the aglycone has been detected in the blood within 15-30m and peaks in the 120-180m range, reaching baseline concentrations within 24 hours.[21] 730mg of the aglycone has been noted to increase plasma concentrations from 695+/-103nM to 1419+/-189nM.
Supplementation of 50, 100, and 150mg quercetin (as dihydrate) can increase blood concentrations of quercetin to 92.2nM, 171.8nM, and 316.2nM respectively; the largest dose was also associated with a large range of serum concentrations, from 240–1292nM[23]
Basal concentrations of quercetin in the blood (from food intake) average 53.6nM, with a large range of 30–163nM.
3.3. Metabolism
After the liver, quercetin exists in the blood solely as quercetin glucuronides.[24] Regardless of initial source, all forms of quercetin undergo hydrolysis and get glucuronidated in the liver before being released into systemic circulation.
3.4. Neural Pharmacology
In pigs, feeding of quercetin aglycone at 50mg/kg BW increased neurological concentrations to 0.02uM,[25] while another study noted levels of 0.22uM with a dosage of 500mg/kg BW.[26]
Quercetin is a highly polar (water-soluble) compound, but seems to be able to cross models of the blood brain barrier.[27][28] Mixed onion flavanoids (of which Quercetin comprises a large amount) appear to have around a 60% efficacy in crossing the BBB.
5. Cardiovascular Health
In persons with stage I hypertension given 730mg quercetin (aglycone in two divided doses) over a month, supplementation was associated with reductions in both systolic (−7+/-2mmHg) and diastolic (-5+/-2mmHg) independent of improvements in oxidative status; this benefit was not seen in nonhypertensive persons. The changes in blood pressure did not persist following supplement cessation.
http://examine.com/s...etin#summary3-0
Edited by Logic, 17 March 2015 - 03:36 PM.