NSI is an unknown, but its effect is to increase neurogenesis with little apparent detriment. If combining the two I recommend low, monitored doses.
How severe is the damage/what was your pattern of use?
It's my understanding MDMA's behavioral effects are due as much to prefrontal dysregulation as striatal toxicity, tho both are bad. (So if there's only a 10.5% reduction in size, NSI+Dihexa is potentially overkill, and not addressing the whole picture of the problem, eg. prefrontal dysregulation/function).
Preliminary evidence of hippocampal damage in chronic users of ecstasy
Various studies have shown that ecstasy (3,4-methylenedioxymethamphetamine) users display significant memory impairments, whereas their performance on other cognitive tests is generally normal. The hippocampus plays an essential role in short-term memory. There are, however, no structural human data on the effects of ecstasy on the hippocampus. The objective of this study was to investigate whether the hippocampal volume of chronic ecstasy users is reduced when compared with healthy polydrug-using controls, as an indicator of hippocampal damage. The hippocampus was manually outlined in volumetric MRI scans in 10 male ecstasy users (mean age 25.4 years) and seven healthy age- and gender-matched control subjects (21.3 years). Other than the use of ecstasy, there were no statistically significant differences between both groups in exposure to other drugs of abuse and alcohol. The ecstasy users were on average drug-free for more than 2 months and had used on average 281 tablets over the past six and a half years. The hippocampal volume in the ecstasy using group was on average 10.5% smaller than the hippocampal volume in the control group (p=0.032). These data provide preliminary evidence that ecstasy users may be prone to incurring hippocampal damage, in line with previous reports of acute hippocampal sclerosis and subsequent atrophy in chronic users of this drug.
----------------
The Nature of 3, 4-Methylenedioxymethamphetamine (MDMA)-Induced Serotonergic Dysfunction: Evidence for and Against the Neurodegeneration Hypothesis
----------------
Effect of repeated exposure to MDMA on the function of the 5-HT transporter as assessed by synaptosomal 5-HT uptake.
Recent studies have demonstrated that a preconditioning regimen (i.e., repeated low doses) of MDMA provides protection against the reductions in tissue concentrations of 5-HT and 5-HT transporter (SERT) density and/or expression produced by a subsequent binge regimen of MDMA. In the present study, the effects of preconditioning and binge treatment regimens of MDMA on SERT function were assessed by synaptosomal 5-HT uptake. Synaptosomal 5-HT uptake was reduced by 72% 7 days following the binge regimen (10 mg/kg, i.p. every 2 h for a total of 4 injections). In rats exposed to the preconditioning regimen of MDMA (daily treatment with 10 mg/kg for 4 days), the reduction in synaptosomal 5-HT uptake induced by a subsequent binge regimen was significantly less. Treatment with the preconditioning regimen alone resulted in a transient 46% reduction in 5-HT uptake that was evident 1 day, but not 7 days, following the last injection of MDMA. Furthermore, the preconditioning regimen of MDMA did not alter tissue concentrations of 5-HT, whereas the binge regimen of MDMA resulted in a long-term reduction of 40% of tissue 5-HT concentrations. The distribution of SERT immunoreactivity (ir) in membrane and endosomal fractions of the hippocampus also was evaluated following the preconditioning regimen of MDMA. There was no significant difference in the relative distribution of SERTir between these two compartments in control and preconditioned rats. The results demonstrate that SERT function is transiently reduced in response to a preconditioning regimen of MDMA, while long-term reductions in SERT function occur in response to a binge regimen of MDMA. Moreover, a preconditioning regimen of MDMA provides protection against the long-term reductions in SERT function evoked by a subsequent binge regimen of the drug. It is tempting to speculate that the neuroprotective effect of MDMA preconditioning results from a transient down-regulation in SERT function.
Low striatal serotonin transporter protein in a human polydrug MDMA (ecstasy) user: a case study.
SERT protein levels were markedly (-48% to -58%) reduced in striatum (caudate, putamen) and occipital cortex and less affected (-25%) in frontal and temporal cortices, whereas TPH protein was severely decreased in caudate and putamen (-68% and -95%, respectively) ... Although acknowledging limitations of a case study, these findings extend imaging data based on SERT binding and suggest that high-dose MDMA exposure could cause loss of two key protein markers of brain serotonin neurones, a finding compatible with either physical damage to serotonin neurones or downregulation of components therein.
Persistent Nigrostriatal Dopaminergic Abnormalities in Ex-Users of MDMA (‘Ecstasy'): An 18F-Dopa PET Study
Ecstasy (±3,4-methylenedioxymethamphetamine, MDMA) is a popular recreational drug with known serotonergic neurotoxicity. Its long-term effects on dopaminergic function are less certain. We used 18F-dopa positron emission tomography (PET) to investigate the long-term effects of ecstasy on nigrostriatal dopaminergic function in a group of male ex-recreational users of ecstasy who had been abstinent for a mean of 3.22 years. We studied 14 ex-ecstasy users (EEs), 14 polydrug-using controls (PCs) (matched to the ex-users for other recreational drug use), and 12 drug-naive controls (DCs).
The putamen 18F-dopa uptake of EEs was 9% higher than that of DCs (p=0.021). The putamen uptake rate of PCs fell between the other two groups, suggesting that the hyperdopaminergic state in EEs may be due to the combined effects of ecstasy and polydrug use. There was no relationship between the amount of ecstasy used and striatal 18F-dopa uptake. Increased putaminal 18F-dopa uptake in EEs after an abstinence of >3 years (mean) suggests that the effects are long lasting. Our findings suggest potential long-term effects of ecstasy use, in conjunction with other recreational drugs, on nigrostriatal dopaminergic functions. Further longitudinal studies are required to elucidate the significance of these findings as they may have important public health implications.
though the 5-HT depletion and toxicity feed on each other, probably the same is true of the dopamine dysregulation
Evidence for a role of energy dysregulation in the MDMA-induced depletion of brain 5-HT.
Although the exact mechanism involved in the long-term depletion of brain serotonin (5-HT) produced by substituted amphetamines is not completely known, evidence suggests that oxidative and/or bioenergetic stress may contribute to 3,4-methylenedioxymethamphetamine (MDMA)-induced 5-HT toxicity. In the present study, the effect of supplementing energy substrates was examined on the long-term depletion of striatal 5-HT and dopamine produced by the local perfusion of MDMA (100 microM) and malonate (100 mM) and the depletion of striatal and hippocampal 5-HT concentrations produced by the systemic administration of MDMA (10 mg/kg i.p. x4). The effect of systemic administration of MDMA on ATP levels in the striatum and hippocampus also was examined. Reverse dialysis of MDMA and malonate directly into the striatum resulted in a 55-70% reduction in striatal concentrations of 5-HT and dopamine, and these reductions were significantly attenuated when MDMA and malonate were co-perfused with nicotinamide (1 mM). Perfusion of nicotinamide or ubiquinone (100 microM) also attenuated the depletion of 5-HT in the striatum and hippocampus produced by the systemic administration of MDMA. Finally, the systemic administration of MDMA produced a 30% decrease in the concentration of ATP in the striatum and hippocampus. These results support the conclusion that MDMA produces a dysregulation of energy metabolism which contributes to the mechanism of MDMA-induced 5-HT neurotoxicity.