New research highlights how nerves – whether harmed by disease or traumatic injury – start to die, a discovery that unveils novel targets for developing drugs to slow or halt peripheral neuropathies and devastating neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis (ALS)...
...Working in cell cultures, fruit flies and mice, Milbrandt and co-author Aaron DiAntonio, MD, PhD, the Alan A. and Edith L. Wolff Professor of Developmental Biology, and their colleagues showed that a protein already known to be involved in axon degeneration, acts like a switch to trigger axon degeneration after an injury.
Moreover, they found that this protein, once unleashed, causes a rapid decline in the energy supply within axons. Within minutes after the protein – called SARM1 – is activated in neurons, a massive loss of nicotinamide adenine dinucleotide (NAD), a chemical central to a cell’s energy production, occurs within the axon.
“When a nerve is diseased or injured, SARM1 becomes more active, initiating a series of events that quickly causes an energetic catastrophe within the axon, and the axon undergoes self-destruction,” said first author Josiah Gerdts, an MD/PhD student in Milbrandt’s laboratory.
Working in neurons in which SARM1 was activated, the researchers showed they could completely block axon degeneration and neuron cell death by supplementing the cells with a precursor to NAD, a chemical called nicotinamide riboside. The neurons were able to use nicotinamide riboside to keep the axons energized and healthy...
https://source.wustl...-for-therapies/