maybe not, but its still an interesting question i think would be interesting to discuss. For example, i've been looking into retinol lately, found a few interesting papers. Although they all unfortunately use 25,000 iu without other dosages, way above the recommended upper limit. It would be nice to see the effect of lower dosages. Also i admit i dont have the full links to many of the studies and necessarily understand everything about them, i know very little about cytokines and cancer ect. To save time and space, im going to primarily post the results, i focused on the rt's
Plasma retinol and total carotenes and fracture risk after long-term supplementation with high doses of retinol http://www.nutrition...0452-8/abstract
Over a median follow-up of 7.8 y, 123 participants with plasma samples reported an incident fracture. Although plasma retinol concentrations were markedly higher than those reported in observational studies, no association was observed between plasma retinol and risk for any fracture (hazard ratio , 0.86 μmol/L; 95% confidence interval [CI], 0.65–1.14) or osteoporotic fracture (HR, 0.97 μmol/L; 95% CI, 0.66–1.43). A lower risk for any fracture was suggested with increasing plasma total carotenes (HR, 0.85 μmol/L; 95% CI, 0.71–1.01).
The effect of vitamin A supplementation on thyroid function in premenopausal women. https://www.ncbi.nlm...pubmed/23378454
Baseline concentrations of thyroid hormones, RBP and TTR were not significantly different between groups. Vitamin A caused a significant reduction in serum TSH concentrations in obese (p = 0.004) and nonobese (p = 0.001) groups. Serum T3 concentrations also increased in both obese and nonobese vitamin A-treated groups (p < 0.001). Serum T4 decreased in all 3 groups after treatment. The results showed a significant reduction in serum RBP in the obese group after vitamin A supplementation (p = 0.007), but no significant change was seen in serum TTR.
Serum TSH concentrations in vitamin A-treated subjects were significantly reduced; therefore, vitamin A supplementation might reduce the risk of subclinical hypothyroidism in premenopausal women.
Vitamin A supplementation and serum Th1- and Th2-associated cytokine response in women. https://www.ncbi.nlm...pubmed/24024773
Vitamin A treatment significantly reduced serum concentrations of IL-1β in obese vitamin A-treated subjects (from 3.58 ± 0.36 to 2.45 ± 0.23 pg/ml, p < 0.006). Serum concentrations of IL-4 and IL-13 were also reduced in obese and nonobese vitamin A-treated subjects (p < 0.05). A significant reduction in IL-1β/IL-4 ratio in the obese vitamin A-treated group was also observed (p = 0.03).
Decline in serum concentrations of IL-1β and IL-1β/IL-4 ratio in obese women suggests that vitamin A is capable of regulating the immune system and possibly reducing the risk of autoimmune disease in this group. Further studies are needed to explore the possible underlying mechanisms.
This next study is a weird one with a whopping dosage.
Safety and efficacy of dose-intensive oral vitamin A in subjects with sun-damaged skin. https://www.ncbi.nlm...pubmed/15041701
The vitamin A doses of 50000 and 75000 IU/day for 1 year proved safe and equally more efficacious than the 25000 IU/day dose and can be recommended for future skin cancer chemoprevention studies.
We have had a long-term interest in vitamin A as a skin cancer chemopreventive agent and have completed Phase I, II, and III clinical trials with varying vitamin A doses (1 , 5) . In our Phase III trial, we documented a 32% risk reduction for squamous cell skin cancers associated with a mean 3.5-year vitamin A intervention at 25,000 IU/day in 2,297 participants with evidence of multiple AKs on the face and/or forearms (1) . Because there was virtually no vitamin A-related toxicity at the 25,000 IU/day dose level, we initiated the present study to evaluate the safety of 2- and 3-fold increases in vitamin A doses for a period of 1 year. As documented in this manuscript, vitamin A doses could be increased safely to 50,000 and 75,000 IU/day for the 1-year period with no evidence of differences in the rate of vitamin A-related toxicities in comparison with either placebo or 25,000 IU/day.
We previously published that long-term vitamin A dosing at 25,000 IU/day can raise cholesterol slightly and that this could increase coronary artery disease risk
Vitamin A supplementation reduces IL-17 and RORc gene expression in atherosclerotic patients. https://www.ncbi.nlm...pubmed/24845870
In atherosclerotic patients, vitamin A supplementation resulted in significant decrease in IL-17 gene expression by 0.63-fold in fresh cell, 0.82-fold in PHA-activated cells and 0.65-fold in ox-LDL-activated cells (P < 0.05 for all). RORc gene expression in fresh cells as well as ox-LDL-activated cells decreased significantly after vitamin A supplementation in atherosclerotic patients (P = 0.0001 for both). In PHA-activated cells, vitamin A supplementation significantly decreased RORc gene in both atherosclerotic patients and healthy subjects by 0.87-fold and 0.72, respectively, while in placebo group, the RORc gene expression significantly increased by 1.17-fold (P < 0.05 for all). Findings of this study suggest that vitamin A supplementation may be an effective approach to slow progression of atherosclerosis.
Vitamin A status is associated with T-cell responses in Bangladeshi men. https://www.ncbi.nlm...pubmed/19747427
Recommendations for vitamin A intake are based on maintaining liver stores of > or = 0.070 micromol/g, which is sufficient to maintain normal vision. We propose that higher levels may be required to maintain normal immune function.
Total T-cells, the naive T-cells:memory T-cells ratio and mitogen-induced lymphocyte proliferation were positively and significantly correlated with vitamin A stores (P < 0.05). Mitogen-stimulated IL-2, IL-4 and TNFalpha increased significantly (P < 0.05) in the vitamin A but not placebo group after supplementation, while IL-10 production was significantly and negatively correlated with vitamin A stores (P < 0.05). Segmented linear regression analysis revealed that naive T-cell counts and T-cell blastogenesis were positively associated with vitamin A stores above but not below 0.070 mumol/g liver. These data show that increasing vitamin A stores above the level that maintains normal vision enhances some measures of T-cell-mediated immunity, suggesting a difference in requirements for maintaining vision and immune function.
Then theres the supposed vitamin a/d ratio, which we dont really have enough information to go on. I have heard a 4/1 A/D ratio based on chickens and supplementation studies in kids. "In their first supplementation study, Linday et al'" used a total of 4,500 to 5,000 IU of vitamin A and 600 to 700 IU of vitamin D per day, yielding vitamin A/D ratios of 7.1 to 7.5. In their subsequent supplementation studies, these researchers used a basic dose of 3,500 to 3,750 IU of vitamin A and 600 to 700 IU of vitamin D
per day, yielding ratios of 5.4 to 5.8."
However, that doesn't count additional vitamin D from sunlight.
I have heard 2.5/1, probably based on guessing the amount of additional vitamin d from sunlight.
Frankly i think the optimal dose is possibly around 1/1 to 1.5/1 A/D.
If i assume the optimal vitamin d level is about 40ng/ml
And use this https://www.vitamind...end-5000-iuday/
Then my body needs roughly 6000iu vitamin D a day.
Which then means that my optimal dose of retinol is potentially around 6000-9000iu.
That said, I figure the smartest thing to do is to take around 3000iu retinol from food, and let beta carotene's do the rest if needed. (although i take 6000iu myself.)
I dont trust carotene's to do the whole job due to poor conversion to retinol and this study here. http://www.jbc.org/c...nt/287/19/15886 Naturally Occurring Eccentric Cleavage Products of Provitamin A β-Carotene Function as Antagonists of Retinoic Acid Receptors
Conclusion: β-Apocarotenoids function as naturally occurring retinoid receptor antagonists.
Significance: The antagonism of retinoid signaling by these metabolites may explain the negative health effects of large doses of β-carotene.
Edited by aza, 20 January 2017 - 11:04 AM.