I just found another interesting benefit of sulforaphane!
Here is an article about how the protein VCAM1 is a cause of brain aging.
https://www.fightagi...l-in-old-blood/
Guess what inhibits VCAM1?
Sulforaphane!
-----
http://www.fasebj.or...nt/656.16.short
The inhibitory effect of sulforaphane on the expression of VCAM-1 in vascular smooth muscle cells
Abstract
Atherosclerosis is a chronic inflammatory disease of the large arteries. Since inflammation involves an upregulation of various adhesion molecules, inhibiting the expression of adhesion molecules can be a critical therapeutic target of inflammatory disease. Sulforaphane has been demonstrated to have a variety of biological effects including anti-inflammatory activity; however, its molecular mechanisms are poorly understood. Here we investigate the effect of sulforaphane on the expression of the vascular cell adhesion molecule(VCAM-1) induced by TNF-α in cultured vascular smooth muscle cells. Cell adhesion assay and western blot analysis revealed that preincubation of VSMCs for 2 h with sulforaphane (1–5μg/ml) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and protein expression of vascular cell adhesion molecule-1 (VCAM-1). In addition, flow cytometry analysis showed that sulforaphane attenuated TNF-α induced production of intracellular reactive oxygen species (ROS). The present data also demonstrated that sulforaphane inhibited the phosphorylation of p38, ERK, JNK and the activation of NF-κB and AP-1 induced by TNF-α. Overall, our results suggest that sulforaphane inhibits the adhesive capacity of VSMCs and downregulates the TNF-α-mediated induction of VCAM-1 in VSMCs by inhibiting the MAPK/NF-κB/AP-1 signaling pathway and ROS production.
http://www.fasebj.or...nt/656.16.short
------
https://www.ncbi.nlm...icles/27681094/
Inhibition of STAT3 Phosphorylation by Sulforaphane Reduces Adhesion Molecule Expression in Vascular Endothelial Cell
Abstract
Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.
----
https://www.ncbi.nlm...pubmed/22155163
Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF-κB and AP-1 signaling pathways.
Erratum in
- Vascul Pharmacol. 2013 Jan-Feb;58(1-2):157.
Abstract
Atherosclerosis is a long-term inflammatory disease of the arterial wall. Increased expression of the cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) is associated with increased proliferation of vascular smooth muscle cells (VSMCs), leading to increased neointima or atherosclerotic lesion formation. Therefore, the functional inhibition of adhesion molecules could be a critical therapeutic target of inflammatory disease. In the present study, we investigate the effect of sulforaphane on the expression of VCAM-1 induced by TNF-α in cultured mouse vascular smooth muscle cell lines. Pretreatment of VSMCs for 2h with sulforaphane (1-5μg/ml) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and protein expression of VCAM-1. Sulforaphane also suppressed TNF-α-induced production of intracellular reactive oxygen species (ROS) and activation of p38, ERK and JNK. Furthermore, sulforaphane inhibited NK-κB and AP-1 activation induced by TNF-α. Sulforaphane inhibited TNF-α-induced ΙκΒ kinase activation, subsequent degradation of ΙκΒα and nuclear translocation of p65 NF-κB and decreased c-Jun and c-Fos protein level. This study suggests that sulforaphane inhibits the adhesive capacity of VSMC and downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the MAPK, NF-κB and AP-1 signaling pathways and intracellular ROS production. Thus, sulforaphane may have beneficial effects to suppress inflammation within the atherosclerotic lesion.