A Direct Comparison of Metabolic Responses to NAD repletion in C57BL/6J and C57BL/6N diet-induced obesity mouse models
Endocrine Abstracts (2018) 59 P176 | DOI: 10.1530/endoabs.59.P176
Antje Garten1,2, David Cartwright2, Lucy Oakey2, Rachel Fletcher2, Daniela Nasteska2, David Hodson2, Dean Larner2, Craig Doig2, Christian Ludwig2, Katarina Kluckova2 & Gareth Lavery2
... Mice were fed a high fat diet (HFD, 60% fat) or standard chow with or without supplementation of 3 g/l NR in the drinking water for 8 weeks. [PMID 27809334 supplemented the drinking water of wild-type C57BL/6J mice with the same amount of NR, and said that this worked out to ~500 mg/kg; based on PMID 12467341, C57Bl/6J mice consume ~6.2 mL water per day and weight 25g (though this is for very young mice), so this might be 744 mg/kg, or less in older mice -MR]. Body and organ weights, liver lipids as well as glucose tolerance were measured. ...
Results: NR supplementation had a slight positive effect on fasting blood glucose and on energy expenditure of B6/N mice on HFD. In B6/J mice, NR influenced substrate usage as determined by respiratory exchange ratio both in chow and HFD-fed mice.
Mitochondrial O2 flux and citrate synthase activity were significantly increased by NR supplementation specifically in heart muscle fibers of B6/N, but not B6/J mice on HFD. No effect on mitochondrial function was found in the other examined tissues.
The mitochondrial enzyme nicotinamide nucleotide transhydrogenase (Nnt) was found to be 2-fold upregulated in hearts of B6/N mice on HFD+NR, which was reflected by lower levels of the oxidative stress marker 4-hydroxynonenal.
Conclusion: The effect of NR supplementation in diet-induced obesity is influenced by mouse genotype and possibly related to cellular redox status.
It would be nice to have a full paper, but it looks like they're saying that NR improved fasting glucose and increased energy expenditure in B6/N mice (which do not have the NNT mutation) on HFD, but did not have such effects in nonobese mice on regular chow (since they mention effects in chow and HFD-fed mice for the C57BL/6J mice, which do have the mutation). I think that's in line with the "NNT hypothesis," since HFD subjects B6/N mice to high oxidative stress and mitochondrial dysfunction, which NR then helps counteract; absent those conditions, NR was not beneficial.
I'm a bit surprised that "Mitochondrial O2 flux and citrate synthase activity were significantly increased by NR supplementation specifically in heart muscle fibers of B6/N, but not B6/J mice on HFD." The "NNT hypothesis" might have predicted that for B6/N, but maybe also for B6/J; you'd also predict an effect in B6/J based on prior studies in HFD animals of this strain.
I'm not sure what it'd've predicted in nonobese mice on regular chow, which they don't say anything about, which might imply there was no effect at all.
I'm also not sure what I'd've predicted for effects on NNT itself in either HFD+NR group (I'm assuming that they only looked at gene expression, not protein levels).
An improvement in oxidative stress in HFD+NR C57BL/6N animals is consistent with NNT, but I'm surprised that ex silentio they seem to be saying that it was not improved in any 6J group. And again ex silentio, they seem to be saying that oxidative stress was not improved in nonobese C57BL/6N on a chow diet; the "NNT hypothesis" would predict either this, or possibly an increase in ox. stress (which I'd expect them to report if they'd found).
You're right about the rat study not comparing responses to different dosages. It reported an endurance response in rats that does not seem to jive with either mobility or aerobic response observed in a pretty comprehensive human muscle-response study.
What "aerobic response observed in a pretty comprehensive human muscle-response study"? As far as comparing the endurance exercise test here to the motility test in the Elysium Basis trial, see my comments above.